Discrete Applied Mathematics the Permutahedron of Series-parallel Posets

نویسندگان

  • Annelie VON ARNIM
  • Ulrich FAIGLE
  • Rainer SCHRADER
چکیده

Schoute (1911) introduced the permutahedron on an n-element set N= { 1, . . . , n} as follows. With any permutation n of N we associate an incidence vector x(71) = (n(I), *.., n(n)) E IR”. The permutahedron is the polytope Perm(N) = conv{x(rr): rr is a permutation of N}. Independently, several authors (cf., e.g., Rado [4], Balas [l], Gaiha and Gupta [2], Young [6]) studied the permutahedron and derived a characterization of Perm(N) via the following linear inequalities x(S) z_!(S), S c N, x(N) = f(N), (1.1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N-free posets as generalizations of series-parallel posets

N-free posets have recently taken some importance and motivated many studies. This class of posets introduced by Grillet [8] and Heuchenne [11] are very related to another important class of posets, namely the series-parallel posets, introduced by Lawler [12] and studied by Valdes et al. [21]. This paper shows how N-free posets can be considered as generalizations of series-parallel posets, by ...

متن کامل

Series-parallel posets and the Tutte polynomial

We investigate the Tutte polynomial f(P; t, z) of a series-parallel partially ordered set P. We show that f(P) can be computed in polynomial-time when P is series-parallel and that series-parallel posets having isomorphic deletions and contractions are themselves isomorphic. A formula forf’(P*) in terms off(P) is obtained and shows these two polynomials factor over Z[t, z] the same way. We exam...

متن کامل

Retractions onto series-parallel posets

The poset retraction problem for a poset P is whether a given poset Q containing P as a subposet admits a retraction onto P, that is, whether there is a homomorphism from Q onto P which fixes every element of P. We study this problem for finite series-parallel posets P. We present equivalent combinatorial, algebraic, and topological charaterisations of posets for which the problem is tractable,...

متن کامل

An algorithm for solving the jump number problem

First, Cogis and Habib (RAIRO Inform. 7Mor. 13 (1979), 3-18) solved the jump number problem for series-parallel partially ordered sets (posets) by applying the greedy algorithm and then Rival (Proc. Amer. Math. Sot. 89 (1983). 387-394) extended their result to N-free posets. The author (Order 1 (1984), 7-19) provided an interpretation of the latter result in the terms of arc diagrams of posets ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001